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ABSTRACT

The Ziv-Zakai bound (ZZB) provides a general mean-square error
analytical baseline to evaluate time delay estimation (TDE) tech-
niques for a wide range of time-bandwidth products and signal-to-
noise ratios, but generally can only be numerically evaluated. The
Weiss-Weinstein bound (WWB) further improves characterization
of the attainable system performance, for narrowband and wide-
band signals with small to moderate fractional bandwidth. Sim-
ilar to the WWB, here we nd a simpli ed closed-form ZZB for
TDE with ultra-wideband (UWB) signals. The resulting simpli ed
bound is found over disjoint segments, separated by thresholds that
characterize different regions of ambiguity. The closed-form sim-
pli ed bound can be analytically studied, and approaches both the
ZZB and the TDE performance of a maximum likelihood estima-
tor.

INDEX TERMS

Ultra-wideband, time delay estimation, Ziv-Zakai bound, Weiss-
Weinstein bound.

1. INTRODUCTION

Time delay estimation (TDE) is fundamental to many applications,
such as array processing, localization, and tracking. Time delay
estimator performance is often characterized via mean square er-
ror (MSE), that can then be compared to analytical MSE lower
bounds. The Cramér-Rao bound (CRB) predicts maximum likeli-
hood estimator (MLE) performance for suf cient time bandwidth
(TB) product and signal to noise ratio (SNR) [1]. However, the
CRB is a local bound that fails to characterize performance when
the ambiguity-free condition is violated, for example, when a cross-
correlation TDE incorrectly selects neighboring correlation peaks.
Tighter bounds for TDE have been developed, including the Chapman-
Robbins (Barankin) bound [2], and the Ziv-Zakai bound (ZZB)
[3]. Though much tighter than the corresponding CRB, they are
not easily manipulated into simple closed form expressions, and
consequently often require numerical evaluation. Further improve-
ments have been made by Bellini & Tartara [4], and Weiss & Wein-
stein [5], [6]. Extension to the vector case has also been developed
[7]. The improved ZZBs in [5], [6] are applicable to either nar-
rowband or wideband waveforms because of explicit assumptions
made throughout the derivations. This facilitates closed form ex-
pressions in some cases, or close approximations that have simple
forms. TDE for frequency hopping signals is considered in [8],
and an overview of TDE bounds is given in [9].

Ultra-wideband (UWB) signals have long been employed in
radar, and more recently for communications and geolocation, e.g.,
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in the 3.1GHz to 10.6GHz band in the US [10, 11]. Timing ac-
quisition, synchronization, and delay estimation are important and
challenging aspects of these systems, with sensitivity to jitter and
signal mismatch [12, 13]. We consider TDE in the UWB regime,
assuming large fractional bandwidth, and simplify the ZZB for this
case. Similar to the developments in [5, 6] for the narrowband and
wideband cases, we develop the ZZB for the UWB case, and nd a
piece-wise approximation in simple closed form that is amenable
to analysis in applications. For the UWB case, the correlation ex-
hibits a signi cantly different pattern than for signals with smaller
fractional bandwidth, such that there is no clearly de ned phase or
envelope ambiguity corresponding to different correlation peaks.
Consequently, we develop a new interpretation of ambiguity, that
depends on the lower and upper signal frequencies. Similarly, we
de ne new threshold points. The new ambiguities arise in seg-
ments dominated by the envelope, phase and their mixtures, that
in turn depend on TB product and SNR. Finally, a simulation study
shows that our simpli ed ZZB closely predicts MLE performance,
and approaches the true ZZB (obtained numerically) in the differ-
ent regions.

2. REVIEW OF ZZB AND WWB

Consider estimation of delay τ between two sensors. Each wave-
form is corrupted by additive noise so that

r1(t) = s(t) + n1(t),

r2(t) = s(t− τ ) + n2(t) − T/2 ≤ t ≤ T/2, (1)

where T is the observation time, and s(t), n1(t) and n2(t) are
the sample functions of the signal and Gaussian noise with spec-
tral densities S(ω), N1(ω), and N2(ω), respectively. The ZZB
development begins with a binary decision problem based on an
arbitrary estimate τ̂ of τ ,

Decide H0 : τ = a if |τ̂ − a| < |τ̂ − a− θ|,
Decide H1 : τ = a + θ if |τ̂ − a| > |τ̂ − a− θ|. (2)

Without loss of generality, the two hypothesized delays are as-
sumed to be equally likely to occur, so the probability of error is
P{τ̂−a > θ/2|τ = a}/2+P{τ̂−a−θ < −θ/2|τ = a+θ}/2.
Denote the error in estimating τ by τ̂ as ε = τ̂ − τ .

We are interested in the mean square error ε2 = E(εεT ) with
τ uniformly distributed within the interval [−D/2, D/2], and θ
within [0, D]. The basic ZZB is given by [3]

ε2 ≥ 1

D

∫ D

0

θ dθ

∫ D/2−θ

−D/2
Pe(a, a + θ) da, (3)
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where Pe(a, a+ θ) is the minimum attainable probability of error
associated with the likelihood ratio test between the two hypothe-
sized delays. It immediately follows that

Pe(a, a+θ) ≤ 1

2
{P (ε > θ/2|τ = a)+P (ε < −θ/2|τ = a+θ)}.

(4)

Bellini and Tartara further noticed that
∫ D/2−θ
−D/2 Pe(a, a+θ)da

is a nonincreasing function of θ [4]. Therefore, by using a nonin-
creasing function V[·] that lls the valleys of the function inside
the bracket, an improved ZZB is given by

ε2 ≥ 1

D

∫ D

0

θ V
[∫ D/2−θ

−D/2
Pe(a, a + θ) da

]
dθ. (5)

If Pe(a, a + θ) = Pe(θ) is independent of a, the improved
ZZB may be simpli ed to the WWB [5]

ε2 ≥ 1

D

∫ D

0

θ V[(D − θ)Pe(θ)] dθ. (6)

Typically, the observation time T is large compared to the cor-
relation time 2π/W where W is the bandwidth. Then, Pe(θ) is
closely approximated by

Pe(θ) ≈ ea(θ)+b(θ)Φ(
√

2b(θ)), (7)

where Φ(x) = 1√
2π

∫∞
x

e−μ
2/2 dμ,

a(θ) = − T

2π

∫ ∞

0

ln[1 + SNR(ω) sin2(ωθ/2)] dω, (8)

b(θ) =
T

2π

∫ ∞

0

SNR(ω) sin2(ωθ/2)

1 + SNR(ω) sin2(ωθ/2)
dω, (9)

SNR(ω) =
[S(ω)/N1(ω)][S(ω)/N2(ω)]

1 + S(ω)/N1(ω) + S(ω)/N2(ω)
. (10)

In the derivation of (7), large WT is assumed. This condition is
satis ed in most practical scenarios. Although it is dif cult to sim-
plify (8) and (9) in general, [5] and [6] considered narrowband
and wideband waveforms, and derived closed form expressions
for different disjoint segments separated by thresholds. The cor-
responding simpli ed ZZBs are very valuable for comprehensive
analytical study of bound performance under different system op-
erating conditions when the fractional bandwidth of the waveform
is small or moderately large (the “narrowband” and “wideband”
cases). In the following, we develop a simpli ed and analytically
tractable ZZB for the UWB case with large fractional bandwidth.

3. SIMPLIFIED ZZB FOR UWB SIGNALS

We consider source signals and noises that are spectrally at over
the frequency band [ω0 −W/2, ω0 + W/2] with spectral densi-
ties S and N respectively, where ω0 denotes the center frequency.
Cases for signals transmitted through frequency selective multi-
path channels will be studied in the future. Then, the SNR de ned
in (10) is constant with respect to W . We de ne ωH = ω0+W/2,
ωL = ω0 −W/2, η = WT · SNR, and Λ = SNR sin2(ωθ/2)
(this last term appeared in (8) and (9)).

The most common estimator of τ is to nd the peak of the
cross-correlation of r1(t) and r2(t). In the absence of noise, this
reduces to the signal auto-correlation

Rss(τ̂) =
ωH
π

sinc(ωH τ̂)− ωL
π

sinc(ωLτ̂ )

=
W

π
cos(ω0τ̂)sinc(Wτ̂/2). (11)

Although the peak occurs at the true delay τ , there are many other
local maxima τ̂ = τ + θ that appear quasi-periodically. In the
narrowband and wideband cases, typically ω0 � W . Then, ac-
cording to the second equality of (11), phase and envelope ambi-
guities occur at points approximately uniformly distributed with
period 2π/ω0 and 2π/W , respectively [6]. However, as W grows
closer to ω0, cos(ω0τ̂ ) cannot be perceived as a carrier signal and
sinc(Wτ̂/2) as the envelope. However, the rst equality of (11)
shows that sinc(ωH τ̂) changes more rapidly than sinc(ωLτ̂) when
ωH � ωL. This fact permits us to similarly introduce the con-
cept of phase and envelope ambiguities for the UWB case. The
phase ambiguity points are caused by ωHsinc(ωH τ̂ )/π with pe-
riod 2π/ωH , and the envelope ambiguity points are caused by
ωLsinc(ωLτ̂)/π with period 2π/ωL. Fig. 1 demonstrates this
transition behavior of Rss(τ̂ ) with ω0 = 20W , ω0 = 5W and
ω0 = W respectively.

R
s
s
(τ̂

)

τ̂

ω0 = 20W

ω0 = 5W

ω0 = W

θphase = 2π/ω0

θenvelope = 2π/W

θphase = 2π/ω0 θenvelope ≈ 2π/ωL

θphase = 2π/ωH
θenvelope = 2π/ωL

Fig. 1. Rss(τ̂) for narrowband, wideband, and UWB signals.

In order to obtain an analytically tractable expression for (6)
suitable for UWB signals, we will partition the integration interval
[0, D] into sub-intervals separated by s1, s2 and s3, de ned be-
low. These points will designate the effects of individual phase or
envelope ambiguity, or their mixture. Then the valley- lling func-
tion V[(D − θ)Pe(θ)] will be closely bounded. Subsequently, an
analytical expression for the integral of each sub-interval will be
derived.

3.1. Simpli cation and Segmentation of V[(D − θ)Pe(θ)]

As previously explained, the more critical ambiguity results from
the phase of the autocorrelation function because of its oscilla-
tory nature with period 2π/ωH , and the secondary ambiguity is
caused by the oscillatory nature of the envelope of the autocorre-
lation function with period 2π/ωL. Therefore, for θ that is not
very close to 0, a simpli ed bound on V[(D − θ)Pe(θ)] can be
developed from the local maxima points (i.e., both the phase and
the envelope ambiguity points) of Pe(θ), or equivalently the local
maxima (ambiguity points) of the autocorrelation function. When
0 ≤ θ < s1, no ambiguity needs to be considered in the au-
tocorrelation function, and this region is noise-dominated. When

III ­ 550



s1 ≤ θ < s2, the phase ambiguity dominates. When s2 ≤ θ < s3,
both the phase and envelope peaks of the autocorrelation function
contribute to the ambiguity. Finally, in the s3 ≤ θ < D region,
the envelope ambiguity has the dominant effect. In the following
we present the key results, and omit the derivations due to space
limitations.

For the noise dominated region (0 ≤ θ < s1), the valley-
lling function V[(D − θ)Pe(θ)] is bounded by

V[(D − θ)Pe(θ)] ≥ (D − θ)e−d1(θ)Φ[
√

c1(θ)], (12)

where

c1(θ) = θ2 · η

48π
(12ω2

0 + W 2),

d1(θ) = θ4 · η · SNR
5120π

(80ω4
0 + 40ω2

0W
2 + W 4). (13)

In the phase ambiguity dominated region (s1 ≤ θ < s2),
the peaks of the autocorrelation function are nearly periodically
distributed, and located approximately at θ̂n = 2nπ/ωH( n =

1, 2, ...). At each θ̂n−1 ≤ θ ≤ θ̂n, the valley- lling function can
be closely bounded by

V[(D − θ)Pe(θ)] ≥ (D − 2π

ωH
− θ)e−d2(θ+2π/ωH)

· Φ[
√

c2(θ + 2π/ωH)], (14)

where

c2(θ) = θ · ω0η

2π
√

1 + 2SNR
,

d2(θ) = d1(θ) +
ηSNR2

384π
θ6

·(ω6
0 +

5

4
ω4
0W

2 +
3

16
ω2
0W

4 +
W 6

448
). (15)

In the region (s2 ≤ θ < s3), where both phase and envelope
ambiguities are dominant, the ambiguity points are the autocorre-
lation peaks not only caused by the highly oscillatory nature of the
phase but also the nearby envelope. Suppose θ̃0, θ̃1, θ̃2, ..., are
the local maxima of Pe(θ), which are phase ambiguity points and
are in the adjacent area of the envelope ambiguity points as well.
Then, 2π/ωH ≤ θ̃n− θ̃n−1 ≤ 2π/ωL. The valley- lling function
is strictly bounded as

V[(D − θ)Pe(θ)] ≥ (D − 2π

ωL
− θ) · e−d3Φ(

√
c3), (16)

with

c3 =
2ωHT · SNR

π2
√

1 + 2SNR
, d3 =

T

2π2
(
3

16
ωHSNR2 +

5

48
ωHSNR3).

(17)
Here, both c3 and d3 are independent of θ.

In the envelope ambiguity dominated region (s3 ≤ θ < D),
θ1, θ2, . . . , are the local maxima associated with the envelope am-
biguity with θn = 2nπ/ωL. The valley- lling function can be
closely bounded as

V[(D − θ)Pe(θ)] ≥
{

(D − 2π/ωL − θ)e−d4Φ(
√
c4)

(θ ≤ D − 2π/ωL)
0 (θ > D − 2π/ωL),

(18)

where c4 = 2b and d4 = −(a + b), and

a = −TW

π
ln

1 +
√

1 + SNR
2

, b =
TW

2π

√
1 + SNR− 1√

1 + SNR
.

(19)
Both c4 and d4 are independent of θ.

3.2. Simpli ed ZZB

Now we collect the above results to formulate a simpli ed ZZB,
and consider some limiting cases. Partitioning the integration in-
terval [0, D] in (6) into segments, and substituting (12), (14), (16)
and (18) into (6), the simpli ed ZZB for UWB signals is given by

ε2 ≥ 1

D

∫ s1

0

θ(D − θ)e−d1(θ)Φ(
√

c1(θ)) dθ

+
1

D

∫ s2

s1

θ(D − 2π

ωH
− θ)e−d2(θ+2π/ωH)

· Φ(
√

c2(θ + 2π/ωH)) dθ

+
1

D

∫ s3

s2

θ(D − 2π

ωL
− θ) · e−d3Φ(

√
c3) dθ

+
1

D

∫ D−2π/ωL

s3

θ(D − 2π

ωL
− θ)e−d4Φ(

√
c4) dθ.

(20)

In this expression, s1, s2 and s3 are found as follows.
Since in the range [0, s1), noise dominates without any ambi-

guity, we have
s1 = 2π/ωH . (21)

At θ = s2, the second term in (20) is approximately equal to the
third term, therefore

c2(s2 + 2π/ωH) = c3. (22)

At θ = s3, the third term in (20) is approximately equal to the
fourth term. Then s3 can be found from

TSNR

π
√

2(1 + 2SNR)
[W +

1

2(s3 − 2π/ωL)
] = c4. (23)

With these values for s1, s2 and s3, the lower bound (20) can
be analytically studied for different system parameters. Next we
consider several limiting cases.

When η → 0, the fourth term in (20) dominates, and the lower
bound is close to

ε2 ≥ 1

D

∫ D−2π/ωL

0

θ(D − 2π/ωL − θ)dθ · Φ(
√
c4)

≈ D2

6
Φ(
√

η/2π) ≈ D2

12
. (24)

When 1� η � 8
√

2(W + 2ω0)/ω0, i.e., when s2 < s3, the
third term in (20) dominates, and the lower bound is very close to

ε2 ≥ s23 − s22
2

· e−d3Φ(
√
c3)

≈ 1

2
(
2π

ωL
+

1

2
√

2ηW
)2Φ(

√
2η

π2
)

≈ 1

4
(
2π

ωL
+

1

2
√

2Wη
)2. (25)

If η � 8
√

2(W + 2ω0)/ω0, the rst term in the summation
becomes the dominant one, and the lower bound approaches

ε2 ≥ 1

c

∫ 2π
√
c/ωH

0

θe−θ
4/(c2/d)Φ(θ) dθ

≈ 1

4c
=

π

η(ω2
0 + W 2/12)

, (26)
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where c = c1(θ)/θ
2 = η(12ω2

0 + W 2)/48π.
The transition from (24) to (25) starts at the 3dB lower point

η = α, which satis es Φ(
√

α/2π) = 1
4

and completes at the
point where the fourth term in (20) is equal to the third term, i.e.,
η = β when

D2

6
Φ(
√

β/2π) =
1

4
(
2π

ωL
+

1

2
√

2Wβ
)2. (27)

Similarly, the transition from (25) to (26) starts at the 3dB
lower point η = γ where

Φ(

√
2γ

π2
) =

1

2
Φ(

√
2β

π2
), (28)

and completes at η = δ where the third term in (20) is equal to the
rst term, i.e.,

1

2
(
2π

ωL
+

1

2
√

2δW
)2Φ(

√
2δ

π2
) =

π

δ(ω2
0 + W 2/12)

. (29)

Accordingly, the lower bound for UWB signals has ve re-
gions, with two thresholds (the second and fourth lines) between
three disjointed segments (the rst, third and fth lines) for differ-
ent η = WT · SNR,

ε2 ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D2/12 η < α
threshold α ≤ η < β
1
4
( 2π
ωL

+ 1

2
√
2Wη

)2 β ≤ η < γ

threshold γ ≤ η < δ
π

η(ω2
0
+W2/12)

δ ≤ η,

(30)

with threshold expressed in (20) as the sum of four terms.

4. SIMULATION

The UWB spectrum de ned by the FCC is used in a simulation,
with center frequency 6.85GHz, bandwidth 7.5GHz and EIRP emis-
sion -41.3dBm. Fig. 2 compares our simpli ed ZZB, the ZZB ob-
tained numerically, and the MLE performance. (For this case, the
WWB is not applicable.) The simulation shows that our simpli ed
ZZB is close to both the numerically obtained ZZB, and the MLE.
Our bound is divided into ve segments, with two thresholds di-
viding the WT ·SNR domain into three disjointed segments. When
WT · SNR < α, the envelope-related ambiguities are dominant
and the MSE bound only depends on the expected maximum time
delay D as D2/12. Since WT/2π � 1, when WT · SNR < 1,
that is, when SNR→ 0, the observed signals are completely dom-
inated by noise and nearly useless for time delay estimation, i.e.,
the performance is equivalent to making a random decision. When
β ≤WTSNR < γ, the lower bound is contributed by both the un-
resolved phase ambiguity and envelope ambiguity. β is a function
of both ω0, W and D. γ is de ned as a 3dB lower point where
the MSE is half of the one at β. Obviously, β and γ increase
with D. The lower bound matches quite well with the CRB when
WT · SNR is very large (linear region for WT · SNR > 20). This
region is noise dominated. Both phase and envelope ambiguities
can be resolved completely.
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